Welcome!

Open Web Authors: Liz McMillan, Lori MacVittie, Gilad Parann-Nissany, Carmen Gonzalez, Mark R. Hinkle

Related Topics: Cloud Expo, SOA & WOA, Virtualization, Web 2.0, Open Web, Security

Cloud Expo: Article

Lessons Learned from Real-World Big Data Implementations

The value of Big Data is in the insights that the data can provide

In the past few weeks I visited several Cloud and Big Data conferences that provided me with a lot of insight. Some people only consider the technology side of Big Data technologies like Hadoop or Cassandra. The real driver however is a different one. Business analysts have discovered Big Data technologies as a way to leverage tons of existing data and ask questions about customer behavior and all sorts relationships to drive business strategy. By doing that they are pushing their IT departments to run ever bigger Hadoop environments and ever faster real-time systems.

What's interesting from a technical side is that ad-hoc analytics on existing data is allowed to take some time. However ad-hoc implies people waiting for an answer, meaning we are talking about minutes and not hours. Another interesting insight is that Hadoop environments are never static or standalone. Most companies take in new data on a continuous basis via technologies like flume. This means Hadoop MapReduce jobs need to be able to keep up with the data flow, either by adding more hardware or by optimizing them.

There are multiple drivers to Big Data (actually there are a lot) but the two most important ones are these: Analytics and Technical Need for Speed. Let's look at some of those and the resulting takeaways.

The Value Is in the Insight Not the Volume
The value of Big Data is in the insights that the data can provide, not the sheer volume of it. The reason that more and more companies are keeping all of their log and transaction data is that they want to gain those insights. The sheer size of the data is rather an obstacle to this goal and has been for a long time. With Big Data technologies this value can be harnessed.

Don't Forget That Data Analysts Are People Too
Ad-hoc analytics doesn't have to be instant, but must not take hours either. It was interesting to see that time to result on ad-hoc analytics is considered important. This is because people are doing those queries, and people don't like to wait for hours. But even more important is that business analytics is often an iterative process. Ask a question, check the answer, refine or change the question. Hours long MapReduce jobs are prohibitive to this process.

New Data Is Coming in All the Time
Big Data environments are constantly fed new data. This is not really big news, but I was still surprised by the constant reiteration of this fact. The constant data growth means that ad-hoc queries get either slower over time or need to work on samples. To remedy this, companies are writing, scrubbing and categorizing MapReduce jobs. These jobs basically strip out all the unimportant stuff and put cleansed, streamline easy-to-access data into new files. Instead of executing analytics against raw files, the analyst works on a cleansed data set. The implications are that scrubbing jobs need to be maintained all the time (as data input is changing over time) and they need to be able to keep up with the velocity of the input. MapReduce is not allowed to run for hours, but needs to be quick and iterative.

Big Data Is Not Cheap
While it sounds obvious, it's something that's not talked about by the vendors unless specifically asked. Hadoop requires a lot of hardware and a lot of expertise. Especially the expertise is hard to come by as of yet. While hardware might be cheap (you don't need expensive boxes for Hadoop) the bigger the environment the higher the operational costs. That operational cost is the reason some Hadoop vendors exist on services alone and also why customers are demanding better monitoring and management solutions.

Data Must Be Accessible at Low Latencies to Provide Value
One very interesting fact is that most early adopters that use Hadoop for analytics use it for ad-hoc analytics and not as a traditional warehouse. They use MapReduce to do the heavy lifting that is usually reserved for ETL jobs and put the resulting dimensions in existing data warehouses or into a NoSQL solution like HBase, Cassandra or MongoDB. These solutions provide low latency access semantics and are then integrated in the transactional application world, e.g. to provide recommendations to the end users.

This does not absolve them from optimizing their Hadoop environment where they can, but it gives them the much needed real time access that Hadoop so far does not provide. This also makes for additional complexity that needs to be maintained and monitored.

NoSQL Solutions Need Management and Monitoring as Well
NoSQL solutions are most often used to provide low latency databases with failover and horizontal scaling characteristics. As expected, practitioners quickly run into new issues like distribution and wrong access patterns. Most NoSQL solutions lack sophisticated monitoring or performance analysis tools and require experts instead. Fortunately several companies are working on providing those tools and some APM vendors work hard to support NoSQL databases similar to normal databases. This is emphasized by another interesting finding: With a fast and scalable data storage, the application itself quickly becomes the response time and scaling bottleneck.

Applications Using NoSQL Technologies Are More Complex
Most NoSQL solutions surrender more complex logic like joins in order to achieve horizontally scalable data distribution. That logic is moved to the application - arguably this is where it should be anyway. NoSQL solutions require data to be stored in a query access optimized way - de-normalization is the key. The flip side of storing data multiple times and the need to keep it in sync on updates, is that the storage logic again becomes more complex. More application logic usually means less performance.

My conclusion as a performance engineer is relatively clear: Big Data requires Performance Management and Monitoring Tools to fulfill its promise in a cost effective and timely manner. Here are some suggestions on what you should think about when you start a Big Data project.

  1. Large Hadoop environments are hard to manage and operate. Without automation in terms of deployment, operations, monitoring and root cause analysis they quickly become unmanageable. Make sure to have a monitoring solution in place that informs you pro-actively of any infrastructure or software issues that would affect your operation. It needs to give you an easy way to pinpoint the root cause.
  2. The easiest way to identify new performance issues is to detect and analyze change. Adopt a life cycle and 24/7 production APM approach. It will enable you to notice changes in data and compute distribution over time. In addition a life cycle approach will allow you to immediately pin point any negative changes introduced by a new software release.
  3. Don't just throw more and more hardware at the problem. While you can use cheaper hardware for Hadoop, it's still cost. But more than that you have to consider the operational drag. Every node you add will make traditional log based analysis more complicated. Instead ensure that you have an APM solution in place that lets you understand and optimize MapReduce jobs at their core and reduce both the time and resources it takes to run them.
  4. Your Hadoop cluster is no island, but will always be connected in some form or the other to a real time or at least transactional system. Make sure that you have a monitoring solution in place that can support both.

NoSQL applications tend to have more complex logic. The very performance and scalability of the store depends on correct data access and data distribution. An good monitoring solution allows you to monitor and optimize that additional complexity with ease; it also enables you to understand how your application access the data and how that access is distributed across your NoSQL cluster in your production system. The best way to ensure a scalable and fast NoSQL store is to ensure optimal distribution and access patterns.

Conclusion
Big Data is still very much an emerging technology and its promises are huge. But in order to deliver on those promises it must be cost and time effective to those that harness its value - The Business and not just technology experts.

More Stories By Michael Kopp

Michael Kopp has over 12 years of experience as an architect and developer in the Enterprise Java space. Before coming to CompuwareAPM dynaTrace he was the Chief Architect at GoldenSource, a major player in the EDM space. In 2009 he joined dynaTrace as a technology strategist in the center of excellence. He specializes application performance management in large scale production environments with special focus on virtualized and cloud environments. His current focus is how to effectively leverage BigData Solutions and how these technologies impact and change the application landscape.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
There is no doubt that Big Data is here and getting bigger every day. Building a Big Data infrastructure today is no easy task. There are an enormous number of choices for database engines and technologies. To make things even more challenging, requirements are getting more sophisticated, and the standard paradigm of supporting historical analytics queries is often just one facet of what is needed. As Big Data growth continues, organizations are demanding real-time access to data, allowing immediate and actionable interpretation of events as they happen. Another aspect concerns how to deliver ...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Media announced that Splunk, a provider of the leading software platform for real-time Operational Intelligence, has launched an ad campaign on Big Data Journal. Splunk software and cloud services enable organizations to search, monitor, analyze and visualize machine-generated big data coming from websites, applications, servers, networks, sensors and mobile devices. The ads focus on delivering ROI - how improved uptime delivered $6M in annual ROI, improving customer operations by mining large volumes of unstructured data, and how data tracking delivers uptime when it matters most.
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
We’re no longer looking to the future for the IoT wave. It’s no longer a distant dream but a reality that has arrived. It’s now time to make sure the industry is in alignment to meet the IoT growing pains – cooperate and collaborate as well as innovate. In his session at @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, will examine the key ingredients to IoT success and identify solutions to challenges the industry is facing. The deep industry expertise behind this presentation will provide attendees with a leading edge view of rapidly emerging IoT oppor...
“With easy-to-use SDKs for Atmel’s platforms, IoT developers can now reap the benefits of realtime communication, and bypass the security pitfalls and configuration complexities that put IoT deployments at risk,” said Todd Greene, founder & CEO of PubNub. PubNub will team with Atmel at CES 2015 to launch full SDK support for Atmel’s MCU, MPU, and Wireless SoC platforms. Atmel developers now have access to PubNub’s secure Publish/Subscribe messaging with guaranteed ¼ second latencies across PubNub’s 14 global points-of-presence. PubNub delivers secure communication through firewalls, proxy ser...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
The BPM world is going through some evolution or changes where traditional business process management solutions really have nowhere to go in terms of development of the road map. In this demo at 15th Cloud Expo, Kyle Hansen, Director of Professional Services at AgilePoint, shows AgilePoint’s unique approach to dealing with this market circumstance by developing a rapid application composition or development framework.