Welcome!

Open Web Authors: Liz McMillan, Lori MacVittie, Gilad Parann-Nissany, Carmen Gonzalez, Mark R. Hinkle

Related Topics: Wireless, Java, SOA & WOA, Web 2.0, Open Web, Cloud Expo

Wireless: Article

Best Practices for Load Testing Mobile Applications | Part 2

How to conduct realistic tests and how to best analyze the results

Mobile applications and mobile websites have become a major channel for conducting business, improving employee efficiency, communicating, and reaching consumers. In Part I of this article we discussed the differences between testing traditional and mobile applications, specific challenges associated with mobile load testing, mobile testing basics and best practices for recording mobile load test scenarios. In this Part 2 of the article, we will look at how to conduct realistic tests and how to best analyze the results.

How to Run Realistic Load Tests
Once you've recorded a mobile test scenario, you need to be parameterize it so that it can emulate users with different identities and behaviors as it is played back to produce a realistic load on the server. This step is required for traditional and mobile web applications, and the tools used to complete it are the same. When playing back the test scenarios, however, there are several challenges specific to mobile load testing.

Simulating Network Conditions
Today's mobile devices generally access the server over networks that are slower than those used by desktop computers. Network conditions have a significant effect on the user experience, and the effect may be more or less pronounced depending on the application. Network characteristics including bandwidth, latency and packet loss have a huge impact on client response times and on the way the server is loaded. By simulating different network conditions in a test lab environment you can forecast the effects of changes in the network infrastructure on the application's performance. Doing so also allows you to discover application issues in the development cycle, therefore reducing costs.

Bandwidth, Latency and Packet Loss
For example, low bandwidth increases the time it takes to download a resource, which then results in higher page load times. If the customer is connected longer, front-end servers hold sockets longer, load balancers have more active TCP sessions and application servers use more threads.

Mobile networks have limited bandwidth and high latency compared to Wi-Fi and broadband. Since the latency is a time added to each request and webpages are composed of many sub-requests, the time required to load a webpage on a mobile device greatly depends on the latency.

Limiting bandwidth and simulating latency and packet loss during a load test allows you to check that all of your users, including mobile users, will get the best user experience and acceptable response times while ensuring your servers won't have problems under load.

Bandwidth and Response Times
The bandwidth is directly correlated with how long it takes to download data from the server. The lower the bandwidth, the higher the response time. A server that provides acceptable response times for desktop users using DSL or another high-speed broadband service may deliver a poor end-user experience to mobile users with lower bandwidth.

It is important to validate your service-level agreements (SLAs) and performance objectives with tests that use the same bandwidth limitations as your users to avoid making decisions based on misleading test results. Such tests must incorporate bandwidth simulation, which is the process of artificially slowing down the traffic during a test to simulate a slower connection.

Bandwidth and Server Load
Clients using lower bandwidth connections also affect the server. The lower the bandwidth, the longer the connections. Longer connections, in turn, lead to more simultaneous connections on your web server and your application server. Thus, mobile users tend to consume more connections than their wired counterparts. Most servers have settings that limit the number of simultaneous connections that they can handle. Without a testing tool that realistically simulates bandwidth, these settings cannot be properly validated.

Simulating Bandwidth Limitations for Individual Virtual Users
When load testing, effective bandwidth simulation requires the ability to individually limit the bandwidth for each user or groups of users, independent of the others.

Consider a situation in which you need to verify performance when 100 mobile users are accessing the server. In this scenario, you'd want to simulate 100 virtual users, with each user limited to a 1Mbps 3G connection. In this case, the total bandwidth for all users is 100Mbps (100 users * 1Mbps/user). Though it is possible to use WAN emulation software or a network appliance to globally limit the bandwidth for the load generation machine to 100 Mbps (or any other arbitrary limit), in practice this does not provide a realistic test because it does not impose a strict 1Mbps constraint on each user. Bandwidth simulation support must be integrated in the load testing tool to enable bandwidth limits to be applied to individual virtual users.

To conduct an even more realistic test, you'll want to simulate a mixed population of users accessing your application with a variety of bandwidths. With a tool capable of bandwidth simulation on a per virtual user basis, you can determine the response times for users at each bandwidth across a range of bandwidths in a single test. This saves times when you need to compare the response times of web applications and business transactions for clients who have different bandwidth limits.

Simulating Browsers and Browser Capabilities
When a browser requests a resource from a web server, it identifies itself via the user-agent header sent with each request. This header contains information about the browser and the platform on which it is running. Servers use this information to deliver different versions of the content based on the client system. As noted earlier, many web applications deliver different content to mobile users and desktop users. Some further differentiate mobile users into subgroups based on information in the user-agent header, delivering less text and smaller images to devices with small screens. This can lead to bandwidth consumption and loading times that vary widely with the browser and platform being used.

As a result, the ability to manipulate the user-agent header is essential not only for recording test scenarios, but also for playing them back. Tools that lack this capability will fail to retrieve the appropriate content from the server.

Simulating Parallel Connections
Mobile browsers, like desktop browsers, can generate the HTTP requests needed to retrieve the static resources of a web page in parallel. Rather than waiting for each image to finish loading before requesting the next, this approach requests multiple images at once to shorten the overall page load time. To measure response times accurately, load testing tools must replicate this behavior by generating multiple requests in parallel. Moreover, they must simulate the appropriate number of parallel connections as this number may differ from one mobile browser to another. Again, tools that lack this capability are not performing realistic tests, placing the results they deliver into question.

Identifying the Most Appropriate Settings for Realistic Tests
Finding the appropriate values for key test settings - such as the user-agent, bandwidth, and number of simultaneous connections - can be a challenge. More advanced load testing tools can help testers set these values. For example, test scenario playback is greatly simplified by tools that can automatically inform the tester of which user-agent string and number of parallel connections to use based on the browser name, version, and platform. The process is further streamlined when the tools can suggest the most appropriate upload and download bandwidth settings based on the technology used (for example, Wi-Fi, 3G, 3G+, and so on) and the quality of the signal (for example, poor, average, or good).

Using the Cloud
You can use load testing with the cloud after (or in conjunction with) on-premise testing in the lab to improve the realism of your tests by generating high loads and testing from different locations, while saving time and lowering costs.

Generating a High Load
For consumer-facing apps and websites, it's often difficult to predict the number of users your applications will have to handle. Traffic spikes that results from a promotion, marketing campaign, new product release, or even unexpected social network buzz can be substantial. To generate a similar load in-house, you would need a significant investment in hardware. Using the cloud, you can generate the same high load using on-demand resources at a much lower cost.

Testing from Different Geographies
Your web application's real users likely access the server from many different geographical locations and use different networks. To properly validate the application and the server infrastructure, your virtual users should operate under similar real world conditions.

Testing the Entire Application Delivery Chain
When your real users are located outside the firewall, you should run your virtual users from the cloud to validate the parts of the application delivery chain that are not tested when testing from the lab, including the firewall, load balancers, and other network equipment.

Tools for Testing with the Cloud
While the cloud represents an opportunity to rapidly increase the scale and improve the realism of load testing at low costs, cloud testing is most effective when it's used to complement internal load testing. Note that the primary factor in the success of load testing with the cloud is not the move to the cloud, rather it's the tool you select and how well it uses cloud technology. In particular, it's best to select a solution that is integrated with multiple cloud platforms, enables in-house test assets to be reused in the cloud, and supports realistic, large-scale tests across multiple geographical regions.

Analyzing Results
The default results of a load test are frequently delivered as averages. For example, load testing tools will typically show what errors occurred and the average response times for a request, web page, or business transaction regardless of the type of users being simulated or the bandwidth available to them.

Because bandwidth may vary widely for the different kinds of users simulated, the errors and response times can also vary widely. Taking an average of results with significant variation does not provide an accurate picture of what is really happening. To gain meaningful insights and to validate your SLAs and performance requirements for each network condition, it is important to go beyond the default results and analyze the results for each kind of user.

Conclusion
In many ways, mobile load testing is similar to load testing classic web applications. As a result, testers can leverage much of their existing knowledge and reuse existing techniques - like using the cloud for realistic, large-scale tests. However, there are specific requirements for testing mobile applications that are not addressed by traditional load testing techniques. Recording mobile test scenarios, conducting realistic tests that simulate real-world bandwidth and browser characteristics, and properly analyzing the results are some of the key areas that require special attention for mobile applications. Addressing challenges in these areas is essential to ensuring mobile web applications are sufficiently tested prior to release and that they will perform well under load in production.

More Stories By Steve Weisfeldt

Steve Weisfeldt is a Senior Performance Engineer at Neotys, a provider of load testing software for Web applications. Previously, he has worked as the President of Engine 1 Consulting, a services firm specializing in all facets of test automation. Prior to his involvement at Engine 1 Consulting, he was a Senior Systems Engineer at Aternity. Prior to that, Steve spent seven years at automated testing vendor Segue Software (acquired by Borland). While spending most of his time at Segue delivering professional services and training, he was also involved in pre-sales and product marketing efforts.

Being in the load and performance testing space since 1999, Steve has been involved in load and performance testing projects of all sizes, in industries that span the retail, financial services, insurance and manufacturing sectors. His expertise lies in enabling organizations to optimize their ability to develop, test and launch high-quality applications efficiently, on-time and on-budget. Steve graduated from the University of Massachusetts-Lowell with a BS in Electrical Engineering and an MS in Computer Engineering.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Technology is enabling a new approach to collecting and using data. This approach, commonly referred to as the "Internet of Things" (IoT), enables businesses to use real-time data from all sorts of things including machines, devices and sensors to make better decisions, improve customer service, and lower the risk in the creation of new revenue opportunities. In his General Session at Internet of @ThingsExpo, Dave Wagstaff, Vice President and Chief Architect at BSQUARE Corporation, discuss the real benefits to focus on, how to understand the requirements of a successful solution, the flow of ...
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
We’re no longer looking to the future for the IoT wave. It’s no longer a distant dream but a reality that has arrived. It’s now time to make sure the industry is in alignment to meet the IoT growing pains – cooperate and collaborate as well as innovate. In his session at @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, will examine the key ingredients to IoT success and identify solutions to challenges the industry is facing. The deep industry expertise behind this presentation will provide attendees with a leading edge view of rapidly emerging IoT oppor...
In this Women in Technology Power Panel at 15th Cloud Expo, moderated by Anne Plese, Senior Consultant, Cloud Product Marketing at Verizon Enterprise, Esmeralda Swartz, CMO at MetraTech; Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems; Seema Jethani, Director of Product Management at Basho Technologies; Victoria Livschitz, CEO of Qubell Inc.; Anne Hungate, Senior Director of Software Quality at DIRECTV, discussed what path they took to find their spot within the technology industry and how do they see opportunities for other women in their area of expertise.
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...

ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's platform-as-a-service. The new platform enables developers to build ap...

Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
The Internet of Things promises to transform businesses (and lives), but navigating the business and technical path to success can be difficult to understand. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, demonstrated how to approach creating broadly successful connected customer solutions using real world business transformation studies including New England BioLabs and more.
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
"For over 25 years we have been working with a lot of enterprise customers and we have seen how companies create applications. And now that we have moved to cloud computing, mobile, social and the Internet of Things, we see that the market needs a new way of creating applications," stated Jesse Shiah, CEO, President and Co-Founder of AgilePoint Inc., in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...