Welcome!

Release Management Authors: Pat Romanski, Elizabeth White, David H Deans, Liz McMillan, Jnan Dash

Related Topics: Java IoT, Microservices Expo, Open Source Cloud, Machine Learning , Release Management , Python

Java IoT: Article

Profiling Python Performance Using lineprof, statprof, and cProfile

Let’s look at profiling in Python

If you’re a regular here, you know how much we care about the full-stack view of applications. Today, let’s zoom in a bit, and talk about the performance of a single layer. In particular, let’s look at profiling in Python.

As an example, let’s take this bit of code for calculating confidence intervals of the mean of a set of data. If you’re not familiar with confidence intervals, they provide a set of bounds for a given statistic; a 95% interval implies that the true mean lies in the calculated range 95% of the time. One way of calculating this involves generating a number of new data sets from the data you have (random selection, with replacement), and looking at that (meta?-)data set. In practice, you typically run this a couple of times, look at the results, and see if they’re converging. If not, you keep running until they do converge, or you hit some max number of iterations.

It turns out, doing 1000 iterations of a reasonable data set size (say, 100k points) is a reasonably expensive operation — about 2 seconds (ish) on my laptop. That’s not too bad in isolation, but run every 15 minutes, on a variety of data sizes up to 1 million, over all customers here at AppNeta? We can do much better.

Since this is Python, let’s see if there’s an obvious way to do it. As it turns out, there is: the standard library module cProfile. This is Python’s flexible, deterministic, C-implemented profiler. (There’s also profile, a pure-python version, but unless you have good cause to avoid C extensions, cProfile is probably a better bet.) cProfile will give us a list of all function calls, sorted however we want. Let’s run it, and dump the result to a file:

ProfilePython-1

There’s a few important things to take note of in these results. The first thing to notice is that 3 of the top 4 functions are in the random module. We only use the random module twice in our example, and the initial use (generating the data set) is a constant 100,000 calls. That leaves 4 million calls from the inner loop of confidence_interval. Since that’s a core part of the algorithm, I wonder if there’s a better way to do that?

For a start, let’s try using a different random number generator. As a rule, if you have a slow function in python, and numpy has a replacement function, the numpy version will be faster. Let’s replace random with numpy.random, and try again:

ProfilePython-2

Much better! Unfortunately, now we have a different problem. Instead of a single line or function call, we only know our problem exists inside a function.

One way to drill down on this is to use statprof. This is a different type of profiler: instead of instrumenting each function call, statprof wakes up at pre-defined intervals and records a stack trace, including line number. Let’s run that:

ProfilePython-3

Cool! Looking back at the code, lines 44 and 45 are the selection and array creation:

ProfilePython-4

Interestingly, the absolute time reported by statprof is a bit lower than cProfile. That difference is due to the statistical nature of statprof. Even at the default setting of 1ms samples, it simply has to do less work than cProfile, who has to instrument all 4 million calls to the various parts of random. It’s worth remembering this difference in overhead, as some code will exihibit different behavior as the timing changes.

In any case, can we do better? It’s possible that the time here is no longer being spent on calculations, but instead on simply creating intermediate arrays. Let’s combine those lines, and re-run:

ProfilePython-5

That certainly seems better: 1.92s vs 2.39s (1.54 + 0.85) from above. At this point, though, be careful. Up until now, we’ve avoided directly comparing profiling runs. Looking at the percentage of time spent, we’re actually at about the same place (85% of total); this run just completed faster than the last run. This is a common pattern — as the low-hanging fruit is picked off, it becomes more and more important to validate smaller gains in more formal ways. How, exactly, to collect those stats is a topic for another post.

It’s also worth mentioning Robert Kern’s line_profiler. It’s a deterministic profiler (like cProfile), but it captures profiling data on a line-by-line basis. It also allows selectively profiling specific functions, which can be invaluable on a larger codebase, to weed out the noise from other modules. Unfortunately, because it does capture every line call you ask it to, the overhead of instrumenting every line you run can be substantial (4x slowdown on my laptop). For completeness, here’s what it looks like on our sample:

ProfilePython-6

Finally, remember that profiling is just one component of a performance toolkit. Most performance problems aren’t complex; they’re just well-hidden. Before writing the above code, I hadn’t realized how expensive random number generation could be. Simply taking the time to look for a faster function saved over 90% of the time spent.

Make it work, then make it pretty, then make it fast. And with the right tools, it doesn’t even take that long.

And if you want to find other ways to optimize your code and make it fast, start using TraceView for free - sign up here.

Related Articles

Python and gevent

Tracing Celery Performance For Web Applications

Tracing Python — An API

More Stories By TR Jordan

A veteran of MIT’s Lincoln Labs, TR is a reformed physicist and full-stack hacker – for some limited definition of full stack. After a few years as Software Development Lead with Thermopylae Science and Techology, he left to join Tracelytics as its first engineer. Following Tracelytics merger with AppNeta, TR was tapped to run all of its developer and market evangelism efforts. TR still harbors a not-so-secret love for Matlab-esque graphs and half-baked statistics, as well as elegant and highly-performant code. Read more of his articles at www.appneta.com/blog or visit www.appneta.com.

@ThingsExpo Stories
BnkToTheFuture.com is the largest online investment platform for investing in FinTech, Bitcoin and Blockchain companies. We believe the future of finance looks very different from the past and we aim to invest and provide trading opportunities for qualifying investors that want to build a portfolio in the sector in compliance with international financial regulations.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
We are given a desktop platform with Java 8 or Java 9 installed and seek to find a way to deploy high-performance Java applications that use Java 3D and/or Jogl without having to run an installer. We are subject to the constraint that the applications be signed and deployed so that they can be run in a trusted environment (i.e., outside of the sandbox). Further, we seek to do this in a way that does not depend on bundling a JRE with our applications, as this makes downloads and installations rat...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
Digital Transformation (DX) is not a "one-size-fits all" strategy. Each organization needs to develop its own unique, long-term DX plan. It must do so by realizing that we now live in a data-driven age, and that technologies such as Cloud Computing, Big Data, the IoT, Cognitive Computing, and Blockchain are only tools. In her general session at 21st Cloud Expo, Rebecca Wanta explained how the strategy must focus on DX and include a commitment from top management to create great IT jobs, monitor ...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...